

Newcastle Grammar School Mathematics Extension 1 2016 HSC Trial Examination

General Instructions

- Reading time 5 minutes
- Working time 2 hours
- Write using black pen
- Board-approved calculators may be used
- A table of standard integrals is provided at the back of this paper
- In Questions 11–14, show relevant mathematical reasoning and/or calculations

Examiner DC

Total marks – 100 Section I Pages 2 – 4 10 marks

- Attempt Questions 1–10
- Allow about 15 minutes for this section
- Section II Pages 5-11

60 marks

- Attempt Questions 11–14
- Allow about 1 hour and 45 minutes for this section

Section I

10 marks Attempt Questions 1–10 Allow about 15 minutes for this section

Use the objective response answer sheet for Questions 1–10.

Question 1

The line DT is a tangent to the circle at T and AS is a secant meeting the circle at A and B. Given that ST = 6, AB = 5 and SB = x, which of the following is the value of x?

Question 2

What is the coefficient of x^5 in the expansion of $(2x + 5)^8$?

(A) 1400000 (B) 224000 (C) 250	(D) 4000
--------------------------------	----------

Question 3

A particle is moving along the x-axis. Its velocity v at position x is given by $v = \sqrt{8x - x^2}$. What is the acceleration when x = 3?

(A) 1 (B) 2 (C) 3 (D) 4

Question 4

What is the domain and range of $y = \cos^{-1}\left(\frac{3x}{2}\right)$?

- (A) Domain $\frac{-2}{3} \le x \le \frac{2}{3}$ Range $0 \le y \le \pi$
- (B) Domain $-1 \le x \le 1$ Range $0 \le y \le \pi$
- (C) Domain $\frac{-2}{3} \le x \le \frac{2}{3}$ Range $-\pi \le y \le \pi$
- (D) Domain $-1 \le x \le 1$ Range $-\pi \le y \le \pi$

Question 5

The parametric equation of a function is $x = 2t^2$, y = 4 - t. The Cartesian equation is

(A)
$$x = 4(2-y)^2$$
 (B) $x = 2(y-4)^2$ (C) $x = 2(y+4)^2$ (D) $x = 2(4-y)^2$

Question 6

What i	s the	$\lim_{x \to 0}$	$\frac{5\sin 3x}{x}$			
(A)	15		(B)	$\frac{5}{3}$	(C) $\frac{3}{5}$	(D) $\frac{1}{15}$

Question 7

Evaluate $\sum_{n=3}^{10} 8 + 5n$ (A) 283.5 (B) 324 (C) 567 (D) 648

Question 8

The expression $\sin x - \sqrt{3} \cos x$ can be written in the form $2\sin(x+\alpha)$. Find the value α

(A)
$$\alpha = \frac{\pi}{6}$$
 (B) $\alpha = -\frac{\pi}{6}$ (C) $\alpha = \frac{\pi}{3}$ (D) $\alpha = -\frac{\pi}{3}$

Question 9

Evaluate $\int_{0}^{1} \frac{e^{x}}{1+e^{x}} dx$

(A)
$$\frac{e}{1+e}$$
 (B) $\frac{e^2}{1+e^2}$ (C) $\log_e(1+e)$ (D) $\log_e\left(\frac{1+e}{2}\right)$

Question 10

A particle moves in a straight line and its position at any time *t* is given by $x = 3\cos 2t + 4\sin 2t$. The motion is simple harmonic. What is the greatest speed achieved by the particle?

(A) 6 (B) 10 (C) 12 (D) 20

Section II

60 marks Attempt Questions 11–14 Allow about 1 hour and 45 minutes for this section

Answer each question in a SEPARATE writing booklet. Extra writing booklets are available.

In Questions 11–14, your responses should include relevant mathematical reasoning and/or calculations.

Question 11 START A NEW BOOKLET (15 marks)

(a) Solve
$$\frac{x^2 + 20}{x - 4} < -4$$
 (3)

(b) Find

i)
$$\int \frac{1}{\sqrt{\frac{1}{9} - x^2}} dx$$
 (2)

ii)
$$\int \sin^2 x \, dx$$
 (2)

(c) i) Find the linear factors of
$$x^3 - 5x^2 + 8x - 4$$
 (2)

ii) Hence solve
$$x^3 - 5x^2 + 8x - 4 > 0$$
 (2)

Question 11 continued on next page

i) Find
$$g^{-1}(x)$$
, the inverse of function $g(x)$ (2)

ii) Find the point of intersection of g(x) and $g^{-1}(x)$ (2)

Question 12 START A NEW BOOKLET (15 marks)

(a) Write
$$\tan\left(\cos^{-1}\left(-\frac{1}{3}\right)\right)$$
 in the form $a\sqrt{b}$ where *a* and *b* are rational. (2)

(b) i) Find
$$\frac{d}{dx}\ln(\cos 2x)$$
 (1)

ii) Hence, or otherwise, find the exact value of
$$\int_{0}^{\frac{\pi}{6}} \tan 2x \, dx$$
 (2)

(c) Prove by mathematical induction that

$$\frac{1}{1\times5} + \frac{1}{5\times9} + \frac{1}{9\times13} + \dots + \frac{1}{(4n-3)(4n+1)} = \frac{n}{4n+1}$$
(3)

(d) Calculate the value of θ , correct to the nearest minute. (2)

(e) Evaluate
$$\int_{0}^{1} x^{3}\sqrt{x^{4}+1} dx$$
, using the substitution $u = x^{4}+1$ (3)

(f) Find
$$\frac{d}{dx} \tan^{-1} \frac{x}{4}$$
 (2)

Question 13 START A NEW BOOKLET (15 marks)

(a) At two points *A* and *B*, 400m apart on a straight horizontal road, the top of a hill is observed, with point *Q* representing the base of the hill, directly below its vertex.

At *A*, the hill is due north with an elevation of 15° . At *B*, the hill is due west with an elevation of 17° .

i) Draw a neat sketch showing all of the above information and find an expression for AQ in terms of h, the height of the hill. (2)

(1)

- ii) Find the height of the hill to the nearest m
- (b) An archer shoots an arrow from a bow at an initial velocity of 60ms⁻¹, while standing at point A. The bow is 1.5m above the horizontal ground level at the time of firing and the angle of projection in 30°.

i) Allowing gravity to be 9.8m/s^{-2} , show that the equations of motion are

$$x = 30\sqrt{3t}$$
 and $y = 30t - 4.9t^2 + 1.5$ (2)

- ii) The archer is aiming for a tree that is 300m away and 3.4 metres in height. Show calculations that prove the arrow will not hit the tree (2)
- iii) The archer has painted a target on the tree at a point 1 metre above the ground.
 What angle (to the nearest degree) will the archer need to shoot the arrow at in order to hit the target if the initial velocity is 60ms⁻¹? (3)

Question 13 continued on next page

- (c) A particle moving in a straight line is performing Simple Harmonic Motion. At time t seconds its displacement x metres from a fixed point 0 is given by $x = 2\sin 3t 2\sqrt{3}\cos 3t$
 - i) Express x in the form $x = R\sin(3t \alpha)$ for some constants R > 0 and $0 < \alpha < \frac{\pi}{2}$. (1)
 - ii) Describe the initial motion of the particle in terms of its initial position, velocity and acceleration. (2)
 - iii) Find the exact value of the first time the particle is 2 metres to the left of *O* and moving towards *O*. (2)

Question 14 START A NEW BOOKLET (15 marks)□

- (a) Find the exact value of x if $log_e(2log_ex) = 1$
- (b) In the circle below AB = AC. Let $\angle PAB = \alpha$ and $\angle ABC = \beta$.

(2)

i) Copy the diagram into your booklet and give a reason why $\angle PQB = \alpha$ (1)

ii) Prove
$$\angle AQB = \beta$$
. (1)

- iii) Prove XYQP is a cyclic quadrilateral (3)
- (c) The rate at a which a cup of coffee cools in air is proportional to the difference between its temperature T and the constant surrounding air temperature A, ie $\frac{dT}{dt} = k(T - A)$, where t is the time in minutes and k is a constant.
 - i) Show that $T = A + Be^{kt}$, where B is a constant, is a solution to the differential equation. (1)
 - ii) The coffee cools from 90°C to 50°C in 2 minutes. The surrounding temperature is 25°C. Find the temperature of the coffee after one further minute has elapsed. Give your answer to the nearest degree. (3)

d) An artist is randomly painting the 9 panel sections of a fence. She paints two panels red, three yellow and four green.

i)	How many sections of fence could she paint differently?	(1)
----	---	-----

ii) What is the probability that the red panels in any section arenot next to each other? (2)

END OF EXAMINATION

Student ID _____

OJECTIVE RESPONSE ANSWER SHEET

Question	1	$_{A}$ \bigcirc	BO	C 🔿	D^{\bigcirc}
	2	$_{A}$ \bigcirc	вО	C 🔿	DO
	3	$A \bigcirc$	вО	CO	DO
	4	$A \bigcirc$	BO	C〇	
	5	$A \bigcirc$	BO	C 🔿	$D\bigcirc$
	6	$A \bigcirc$	BO	C 🔿	D \bigcirc
	7	$A \bigcirc$	BO	C 🔿	$D\bigcirc$
	8	$A \bigcirc$	BO	C 🔿	D \bigcirc
	9	$A \bigcirc$	BO	C 🔿	$D\bigcirc$
	10		BO	C 🔿	

2016 Year 12 Newcastle Grammar School Mathematics Extension 1 HSC Trial Examination

Newcastle Grammar School Mathematics Extension 1 2016 HSC Trial Examination

General Instructions

Ëх

affilier D

- Reading time 5 minutes
- Working time 2 hours
- Write using black pen
- Board-approved calculators may be used
- A table of standard integrals is provided at the back of this paper
- In Questions 11–14, show releval mathematical reasoning and/o calculations

Total marks – 100 Section I Pages 2 – 4 10 marks

- Attempt Questions 1–10
 - Allow about 15 mutes for this

-10

section Section II es

A tern at Questions 11–14 A low about 1 hour and 45 minutes for unis section

QUESTION MC EXAM	2016 HSC Ext 1 Task 4	
Solution	Mark Comment	
$\int x(x+5) = 6^2$		
$\pi^2 + 5\pi = 36$		
$2c^{2} + 52c - 36 = 0$		
(2c + 9)(2c - 4) = 0		
neglect negative answer.	À	
$2] (2x+5)^{8}$		
${}^{8}C_{k}(2z)^{(5)k}$		
at $8 - 1 < = 5$ k = 3		
$c_{3}2^{5}5^{3} = 224000$	Ê	
$\frac{3}{\sqrt{2}} = \sqrt{85c - x^2}$		
$v^2 = 2se - ze^2$		
a= d 1 v 2		
$=\frac{1}{2}(8-2\pi)$		
· 4 · jc		
at >c = 3		
$a = 1 m/s^2$	A	

QUESTION M ⁺		EXAM	2016	HSC Ext 1 Task 4	
Solut	ion		Mark	Comment	
A y= co= '(:	$\frac{3x}{z}$				
y m	donain.	2 (2 42)			
	range c	°≤Y≤T			
			$\widehat{(A)}$		
$\frac{2}{3} \qquad \frac{2}{3} \qquad \frac{2}{3}$	2c				
m de la g	e que				
$2c + 2(4 + y)^2$	- mark		\bigcirc		
<u>6</u> lin <u>Csin3x</u> x x	sense :	3 x 5 5 1 ~ 2)c S>c			
	= 3×5× 1	in singe			
	= 3×5×	l			
	ere of the const		\bigcirc		
7 1× 8+5.					
= 8+15 + 8+20 +	8+25 + 8+3	0 8+50			
= 23 +	58				
= 1/2 [a+ 1] = 2 [23+58]	324		B		

QUESTION M/C	EXAM	20	016 HSC Ext 1 Task 4
Solu	tion	Mark	Comment
8] sin 2 - J3	C 05 20		
2] Sink = 2 cost = 13		
$= 2 \left(\frac{1}{2} \sin 2 \alpha - \frac{1}{2} \cos \alpha \sin 2 \alpha - \frac{1}{2} \cos \alpha \sin 2 \alpha - \frac{1}{2} \cos \alpha \sin 2 \alpha - \frac{1}{2} \sin \alpha - \frac$	JE cosz) 2 - sind cosz)		-
$= 2 \sin (x - a)$ $= 2 \sin (x - a)$	5) 5)		
$= 2 \sin (x + $	(-蛋))		
$\int_{0}^{\infty} \frac{e^{2x}}{1+e^{2x}} dx$			
= [In	$(1+e^{\infty})_{0}^{1}$		
= 1 _N () +	e) - In (1+1)		
= In (1.	$(e) - \ln 2$		
$= \ln ($	1+e)	\bigcirc	
. · ·			

QUESTION MLC EXAM	2	016 HSC Ext 1 Task 4
Solution	Mark	Comment
$\frac{10}{3c} = 3\cos 2t + 4\sin 2t$		
$jc = -3sin 2t \cdot 2 + 4cos 2t \cdot 2$		
= $8\cos 2t - 6\sin 2t$		
now max velocity at set o		
at = 0		
$3\cos 2t + 4\sin 2t = 0$		
4 sin 2 x = - 3 cos 2 +		
4 tan 21 = - 2		
+a-2+ = -3		
$2t = tan^{-1}(\frac{3}{4})$		
max velocity		
$\dot{\chi} = 8\cos(\tan^2 \frac{3}{4}) - 6\sin(\tan^2 \frac{3}{4})$		
= 10	B	
	:	

QUESTION	QUESTION 11 EXAM 2016 HSC Ext 1 Task		HSC Ext 1 Task 4
Soluti	ion	Mark	Comment
a) $\frac{2c^2+20}{2c-4} < -4$			
$(7t^{2}+20)(x-4) <$	$-4(x - 4)^{2}$		
x3 - 4x2 + 20x- 8	$so = 4(n^2 - 8x)$		
22. 424 + 2010 - 8	0 < -420 + 3220 - 64		
283 - 12x -	16 < 0		
(>c+2) (2c2 -	2x-8)<0		
(2C+2) (2C-4	f)(x+2) < 0		
$(2c+2)^{2}(2c-4)$) <0		
2 2 V	+)c		
>< < -	2 or -2 < 2 < 4	201	
$\frac{1}{10}$	dx = dx $\int_{-x^2}^{x^2}$		
= sin	-13x+C	2/	

QUESTION 11 EXAM	2	016 HSC Ext 1 Task 4
Solution	Mark	Comment
Solution Solution Solution b) ii) $\int \sin^{2}x dx$ $= \frac{1}{2} \int 1 - \cos \lambda x dx$ $= \frac{1}{2} \left(2c - \frac{\sin \lambda x}{2} \right) + C$ $= \frac{x}{2} - \frac{\sin \lambda x}{4} + C$ ()i) let $P_{00} = 2c^{3} - 5x^{2} + 8x - 4$ P(1) = 1 - 5 + 8 - 4 = 0 2c - 1 is a factor $\frac{x^{2} - 4x + 4}{2}$ $x^{2} - x^{2}$ $- 4x^{2} + 8x$ $+ 9x^{2} + 4x$ $\frac{4yz - 4}{2}$ 4yz - 4 yz - 4 z - 4	Mark	Comment Nov $\cos 2x = \cos^{2} x - \sin^{2} x$ $= 1 - \sin^{2} x - \sin^{2} x$ $= 1 - 2\sin^{2} x$ $2\sin^{2} x = 1 - \cos 2x$ $\sin^{2} x = \frac{1}{2} (1 - \cos 2x)$
$P(x) = (x - 1) (x^2 - 4x + 4)$ = (x - 1) (x - 2) ²	2 	

QUESTION 12 EX	KAM	2(016 HSC Ext 1 Task 4
Solution	Γ	Nark	Comment
a) $\tan\left(\cos^{-1}\left(\frac{1}{3}\right)\right)$			
$2\sqrt{2}$	ša,		ENde cosisc
$tan \alpha = 2J_2$			C=x=
= - 252			
a = -2 b = 2			
		2/	
b)) de la (costa) de		-	
$= \frac{1}{\cos 2x} - \sin 2x = 2$			
$= -2 \frac{sin22c}{cos2x}$			
$= -2 \tan 2 \sin 2$		5	
ii) $\int_{0}^{\overline{E}} \tan 2\pi d\pi = -\frac{1}{2} \int_{0}^{-2} \tan 2\pi d\pi$	ix du		
$= -\frac{1}{2} \left[\ln(\cos \theta) \right]$	2.12)]		
======================================	1]	2	
うしっち	or h	52	

۱	2

QUESTION 12 EXAM 2016 HSC Ext 1 Task 4

Solution	Mark	Comment
c) Step 1 Prove true for n=1		
LHS=		
S DMC = 1		
4+1		
5		
= LMS		
Step ? Arguna lour four l		
The massime there for N: K		
$\frac{1}{1\times 5} + \frac{1}{5\times 9} + \frac{1}{(4k-3)(4k+1)} = \frac{1}{4k+1}$		
Step 3 Prove true for n= k+1	:	
ic.		
$\frac{1}{1\times5} + \frac{1}{5\times9} + \frac{1}{(4(k+1)-3)(4(k+1)+1)} = \frac{k+1}{4(k+1)+1}$		
$LHS = \frac{1}{4k+1} + \frac{1}{(4(k+1)-3)(4(k+1)+1)}$		
$= \frac{k}{4k+1} + \frac{1}{(4k+1)(4k+5)}$		
= k(4k+5) + 1		· · · · · ·
(4k+1)(4k+5)		
$=\frac{4k^{2}+5k+1}{(4k+1)(4k+5)}$		
= (+k+1)(k+1)		
(4k+1)(4k+5)		
$= \frac{k+1}{4(k+1)+1}$		
= R.H.S		

QUESTION 12

	13
	• •
	· •

EXAM 2016 HSC Ext 1 Task 4

Solution	Mark	Comment
c) Step 1 Prove true for n=1		
1 H S = -1		
lx5		
5		
$RHS = \frac{1}{4+1}$		
5		
= L.H.S		
. True for n=1		
Step 2 Assume true for n=k		
$\frac{1}{1\times 5} + \frac{1}{5\times 9} + \frac{1}{9\times 13} + \frac{1}{(4k-3)(4k+1)} + \frac{1}{4k+1}$		
Step 3 Prove true for n= let (
Required to prove		
$\frac{1}{1 \times 5} + \frac{1}{5 \times 9} + \frac{1}{(4(k+1) - 3)(4(k+1) + 1)} = \frac{k+1}{4(k+1)+1}$		
$LMS = \frac{k}{4k+1} + \frac{1}{(4(k+1)-3)(4(k+1)+1)}$		- -
$=\frac{k}{4k+1} + \frac{1}{(4k+1)(4k+5)}$		
= k(4k+5) + 1		
(4k+1)(4k+5)		
$\frac{4k^2+5k+1}{(41-1)(41-5)}$		
$\frac{(4+1)(4+1)}{(4+1)}$		
$=\frac{(4k+1)(4+1)}{(4+1)(4+5)}$	-	

QUESTION 12 EXAM	2	016 HSC Ext 1 Task 4
Solution	Mark	Comment
c) conit		
Therefore the statement is true		
for n=k+1 if it is true for n=k		
As the statement is true for n=1,		
by the principle of mathematical		
induction, the statement is true		
for all integers n > 1	31	
$d) tan \phi = \left[\frac{m_1 - m_2}{1 + m_1 m_2} \right]$		
x + 3y - 4 = 0		
$u = -\frac{x}{3} + \frac{4}{3}$		
$M_1 = -\frac{1}{3}$		
5x - 2y + 3 = 0 $y = \frac{5}{2}x + \frac{3}{2}$		
$M_2 = \frac{5}{2}$		
i. tan Q= 1-3-2 1-3		
0 = 86°38' (nearest min)	2	

OUESTION
VUEDIION

12

EXAM

2016 HSC Ext 1 Task 4

Solution	Mark	Comment
e) $\int_{0}^{1} x^{3} \sqrt{x^{4} + 1} dx$ let $u = x^{4} + 1$ $du = 4x^{3} dx$ $= 4 \int_{1}^{2} u^{\frac{1}{2}} du$ $= 4 \int_{1}^{2} u^{\frac{1}{2}} du$ $= \frac{1}{4} \left[\frac{2u^{\frac{3}{2}}}{3} \int_{1}^{2} \right]$ $= \frac{1}{4} \left[\frac{4\pi^{2}}{3} - \frac{2\pi^{3}}{3} \right]$		
$= \frac{\sqrt{2}}{3} - \frac{1}{6}$ (0.30 2dp).	100	
$f_{3} \frac{d}{dx} \tan^{-1} \frac{x}{4}$ $= \frac{4}{16 + 2c^{2}}$	2/	

QUESTION 13	EXAM	20	16 HSC Ext 1 Task 4
Solut	ion	Mark	Comment
$H^{2} = \frac{h^{2}}{h^{2}}$ $H^{2} = \frac{h}{h^{2}}$ $H^{2} = \frac{h}{h^{2}}$ $H^{2} = \frac{h^{2}}{h^{2}}$ $H^{2} = \frac{h^{2}}{h^{2}}$ $H^{2} = \frac{h^{2}}{h^{2}}$	$\frac{1}{12}$	2	
= 649 h = 80.6 ÷ 81 m	7 (nearest metre)	-	

QUESTION	13	EXAM	20)16 HSC Ext 1 Task 4	
	Solution		Mark	Comment	
b) <u> <u> </u> </u>	uls Vsin30 Ds 30				
Morizontal at	$\dot{x} = 0$ $\dot{x} = c$ $\dot{t} = 0$ $\dot{x} = V\cos 30$ $c = V\cos 30 \pm 4$ $\dot{t} = 0 c = 0$ $\dot{t} = 0 c = 0$ $\partial t = 1/\cos 30 \pm 4$	0			
·	$= 60\cos 30t$ $= 30\sqrt{3}t$				
Vertically	$\dot{y} = -gt + c$ $t=0 \dot{y} = Vsin30$ $\dot{y} = Vsin30 - gt$ $y = Vsin30 t - \frac{1}{2}gt$ $t=0 y=1.5$ $y = 60sin30t - \frac{1}{2}t$ $= 30t - 4.9t^{2}t$	2 + C c = 1.5 $q = 8 t^{2} + 1.5$ 1.5			
			2		

QUESTION 13 EXAM	2016 HSC Ext 1 Task 4	
Solution	Mark	Comment
(0) ii) at x= 300		
$300 = 305_3 t$		
10		
at $t = \frac{10}{\sqrt{3}}$		
$y = 30 \left(\frac{19}{3}\right) - 4.9 \left(\frac{100}{3}\right) + 1.5$		
= 11.37m		
.". The arrow misses the tree.	2	
$(ii) 300 = 60 \cos 0 t$		
$1 = 60 \sin 0 t - 4.9 t^2 + 1.5$		
$t = \frac{5}{\cos \theta}$		
$-0.5 = 60 \sin 0.5 - 4.9.25$		
= $300 \tan \theta - \frac{122.5}{(\cos^2 \theta)}$		
$0 = 300 \tan 0 - 122.5 (sec^{2}0) + 0.5$		
= 300 tan 0 - 122:5 (1+tan20)+0:	-	
= 300 tano - 122:5 - 122:5 tan 20 + 0:5	-	
1225 tan20 - 300 tano +122 = 0		
$ta = 300 \pm \sqrt{90000 - 4 \times 122.5 \times 122}$		
245		
= 1.93 or 0.51		
0=63° 27°	3	

I

QUESTION	13	EXAM	20	016 HSC Ext 1 Task 4
	Solution		Mark	Comment
c) $x = 2 \sin 3t$ i) $x = 4 (\frac{2}{4})$ $= 4 (\cos 3)$ $= 4 \sin 3$ $= 4 \sin 3$ $x = 4 \sin 3$ $x = 4 \sin 3$ x = 5 x = 5	$\frac{301000}{2}$ $= 2\sqrt{3}\cos 3x$ $\frac{4}{2}$ $\frac{4}{2}$ $\frac{4}{2}$ $\frac{4}{2}$ $\frac{2}{2}$ $\sin 3x - 25}{2}$ $\frac{3x - 25}{4} \cos 2x$ $\frac{3x - 3}{4} \cos 2x$ $\frac{3x - 3}{2}$ $\frac{3x - 3}{2}$ $\frac{4}{2} \cos (3x - \frac{3}{2})$ $\frac{12}{2} \cos (3x - \frac{3}{2})$ $\frac{12}{2} \cos (3x - \frac{3}{2})$ $= 12\cos (-\frac{3}{2})$ $= 0$ $= 12\cos (-\frac{3}{2})$ $= -12\sin (3x - \frac{3}{2})$ $= -36\sin (3x - \frac{3}{2})$ $= -36\sin (3x - \frac{3}{2})$ $= -36\sin (3x - \frac{3}{2})$	253 $\cos x = \frac{2}{4}$ $\sin x = \frac{253}{4}$ (3t) (lviark	Comment
	2 Jasin (يتي)		

QUESTION 13 EXAM	2	016 HSC Ext 1 Task 4
Solution	Mark	Comment
c) conit $5i = -36 \sin(-\frac{\pi}{3})$ $= 1853 \text{ m/s}^2$ ii) at $2c = -2$ $-2 = 4 \sin(3t - \frac{\pi}{3})$ $-\frac{1}{2} = \sin(3t - \frac{\pi}{3})$	2~	o Accelerating tomards
$\frac{\pi}{6} = 3t - \frac{\pi}{3}.$ $\frac{\pi}{6} = 3t$ $t = \frac{\pi}{18}$ $t = \frac{\pi}{18}$ is the first time. The particle is at $2t = 2$ moving towards the origin.	~	

QUESTION 4	XAM 2016 HSC Ext 1 Task 4
Solution	Mark Comment
Solution a) $\log_{e}(2\log_{e}2c) = 1$ $2\log_{e}2c = c$ $\log_{e}2^{2} = c$ $2c^{2} = c^{2}$ $2 = \sqrt{c^{2}}$ $= c^{\frac{2}{2}}$	Mark Comment
alternatively.	
loge (21 age x) = 1	
2 loge = e	
log_ >c = f	
$x = c^{e_2}$	
= Ve	

QUESTION 14	EXAM	2016 HSC Ext 1 Task 4		
Solu	tion	Mark	Comment	
b) $P = \begin{pmatrix} a \\ a \\ a \\ b \end{pmatrix}$ $P = \begin{pmatrix} a \\ a \\ a \\ b \\ a \\ b \\ a \\ a \\ b \\ b \\$	ition tion tion at the circumfrace at the circumfrace at the circumfrace at the same arc a equal) er) celes Δ ($BA = cA$) case angles of an sreles Δ are equal). as at the circumfrace at the circumfrace at the circumfrace at equal) (Angle sum of a triangle) (Vertically opposite	Mark	Comment	
angle	es are equal)			

QUESTION 14	EXAM	A 2016 HSC Ext 1 Task 4		
Solution		Mark	Comment	
LPQY = x+B LPQY + LPXY = x+F	3 + 180 - (x + 13)			
= 180				
. XYQP is a	cyclic guad			
as opposite angles	i are			
supplementery.		3		
())) T=A+Bekt	,			
dt = Bett.k				
= k Bekt				
now Bekt = T-A				
$\frac{dT}{dk} = k(T-A)$)	١		
ii) at $t = 0$ A = 25	T= 90			
90 = 25 + Bek	(x ()			
= 25 + B	1			
B = 65				
T = 25 + 65	ekt			
at $x = 2$ T = 5	0			
50 = 25 + 65e	2k			
e ^{2k} - 25 65				

QUESTION 4 EXAM	2016 HSC Ext 1 Task 4	
Solution	Mark	Comment
$2k = \log_{e} \frac{25}{65}$ $k = \frac{1}{2} \log_{e} \frac{5}{13} \qquad 0 \approx 0 \approx 0 \approx 0$ $at \ t = 3$ $T = 25 + 65e^{(\frac{3}{2}\log_{e} \frac{5}{13})}$		(-0.4778)
$T = 41^{\circ}$	N/	
d> i) $\frac{9!}{2! \times 3! \times 4!} = 1260$	1	
ii) $P(red at together) - \frac{8!}{3! \times 4!}$ = 280		
P(Not together) = 1260 - 280 1260 $= \frac{980}{1260}$		
= <u>?</u> G	2	
·		